Experimental Study on Thermal Conductivity and Hardness of Cu and Ni Nanoparticle Packed Bed for Thermoelectric Application

نویسندگان

  • Zi-Zhen Lin
  • Cong-Liang Huang
  • Wen-Kai Zhen
  • Yan-Hui Feng
  • Xin-Xin Zhang
  • Ge Wang
چکیده

The hot-wire method is applied in this paper to probe the thermal conductivity (TC) of Cu and Ni nanoparticle packed beds (NPBs). A different decrease tendency of TC versus porosity than that currently known is discovered. The relationship between the porosity and nanostructure is investigated to explain this unusual phenomenon. It is found that the porosity dominates the TC of the NPB in large porosities, while the TC depends on the contact area between nanoparticles in small porosities. Meanwhile, the Vickers hardness (HV) of NPBs is also measured. It turns out that the enlarged contact area between nanoparticles is responsible for the rapid increase of HV in large porosity, and the saturated nanoparticle deformation is responsible for the small increase of HV in low porosity. With both TC and HV considered, it can be pointed out that a structure of NPB with a porosity of 0.25 is preferable as a thermoelectric material because of the low TC and the higher hardness. Although Cu and Ni are not good thermoelectric materials, this study is supposed to provide an effective way to optimize thermoelectric figure of merit (ZT) and HV of nanoporous materials prepared by the cold-pressing method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphological and physical study of Cu-Ni sintered porous wicks used in heat pipes and fuel cells

Recently, the use of renewable energies has increased to  environmental pollution, limitation of fossil energy resources and energy security  One of the means that enable us to use such energies is fuel cells (FC). However, there are many problems  in the commercialization of FC from an economically and operation perspective. One of the most important problems is heat management. New heat pipes...

متن کامل

Evaluation of microstructure and hardness in repair with OAW method in copper DHP moulds

The surface of continuous casting moulds with high number of castings may be worn or destructed. As result, an approach for increasing these moulds life is necessary. In this project, the goal is the restoration of the DHP copper sample. In this project, the destruction of the copper sample is done by creation of groove using a CNC machine. The restoration of the sample is done using OAW and fi...

متن کامل

Evaluation of microstructure and hardness in repair with OAW method in copper DHP moulds

The surface of continuous casting moulds with high number of castings may be worn or destructed. As result, an approach for increasing these moulds life is necessary. In this project, the goal is the restoration of the DHP copper sample. In this project, the destruction of the copper sample is done by creation of groove using a CNC machine. The restoration of the sample is done using OAW and fi...

متن کامل

Thermal Conductivity of Cu and Al-Water Nanofluids

Nanofluids are suspensions of nanoparticles in the base fluids, a new challenge for thermal sciences provided by nanotechnology. In this paper, the tested fluids are prepared by dispersing the Al and Cu into water at three different concentrations such as 500, 1000 and 2000 ppm. Thermal conductivities of these fluids are measured experimentally by thermal property analyzer i.e. KD2 Pro by using...

متن کامل

An Experimental Study on the Thermal Conductivity of Carbon Nanotubes/Oil (TECHNICAL NOTE)

[if gte mso 9]> In the present work, the thermal conductivity coefficients of nanoparticle-oil suspensions for two types of carbon nanotubes, single-walled (SWNTs) and multi-walled (MWNTs) carbon nanotubes at 0.1, 0.2 and 0.3 wt.% were measured by a modified transient hot wire method (KD2-pro thermal property meter). Results showed that the thermal conductivity of suspension containing single-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017